The Tempest was designed in 1964 by Ian Proctor and was adopted as an international class in 1968 it changed to recognised status in November 2007.
INDEX

PART I – ADMINISTRATION

Section A – General
A.1 Language 4
A.2 Abbreviations 4
A.3 Authorities and Responsibilities 4
A.4 Administration of the Class 4
A.5 ISAF Rules 4
A.6 Sailing Instructions 5
A.7 Class Rules Amendments 5
A.8 Class Rules Interpretations 5
A.9 International Class Fee(s) and ISAF Building Plaque 5
A.10 Sail Numbers 5
A.11 Certification 6
A.12 Validity of Certificates 6
A.13 Compliance with Class Rules 6
A.14 Re-Certification 6
A.15 Definitions 7

Section B – Boat Eligibility
B.1 Certificate 7
B.2 Certification Marks 7
B.3 Class Association Sticker 7

PART II – REQUIREMENTS AND LIMITATIONS

Section C – Conditions for Racing
C.1 General 8
C.2 Crew ... 8
C.3 Personal Equipment 8
C.4 Advertising 8
C.5 Portable Equipment 9
C.6 Boat .. 9
C.7 Hull .. 10
C.8 Hull Appendages 10
C.9 Rig ... 11
C.10 Sails .. 12

Section D – Hull
D.1 General 13
D.2 Hull Components 13
D.3 Gunwale Rubbing Strakes 14
D.4 Mast Partners 14
D.5 Traveller Track 14
D.6 Assembled Hull 14

Section E – Hull Appendages
E.1 General 18
E.2 Keel .. 18
E.3 Rudder Blade, Rudder Stock and Tiller 19

Section F – Rig
F.1 Parts ... 20
F.2 General 20
F.3 Mast .. 21
F.4 Boom .. 22
F.5 Spinnaker Pole 23
F.6 Standing Rigging 23
F.7 Running Rigging 23

Section G – Sails
G.1 Parts ... 24
G.2 General 24
G.3 Mainsail 25
G.4 Headsail 26
G.5 Spinnaker 26
INTRODUCTION

International Tempest is a one-design class. The Class Rules, Construction and Measurement Plans and Building Specifications are intended to ensure that boats of this class are alike in hull, deck, keel form, construction, and weight; rudder shape; sail area and some other items that affect performance.

International Tempest hulls, hull appendages, rigs and sails are measurement controlled.

International Tempest hulls, hull appendages, rigs and sails may, after having left the manufacturer, only be altered to the extent permitted in Section C of the class rules.

Owners and crews should be aware that compliance with rules in Section C is NOT checked as part of the certification process.

Rules regulating the use of equipment during a race are contained in Section C of these class rules, in ERS Part I and in the Racing Rules of Sailing.

This introduction only provides an informal background and the International Tempest Class Rules proper begin on the next page.
PART I – ADMINISTRATION

Section A – General

A.1 LANGUAGE
A.1.1 The official language of the class is English and in case of dispute over translation the English text shall prevail.
A.1.2 The word “shall” is mandatory and the word “may” is permissive.

A.2 ABBREVIATIONS
A.2.1 ISAF International Sailing Federation
MNA ISAF Member National Authority
ITA International Tempest Association
NTA National Tempest Association
ERS ISAF Equipment Rules of Sailing
RRS ISAF Racing Rules of Sailing

A.3 AUTHORITIES AND RESPONSIBILITIES
A.3.1 The international authority of the class is the ISAF which shall co-operate with the ITA in all matters concerning these class rules.
A.3.2 No legal responsibility with respect to these class rules, or accuracy of measurement, rests with:
 The ISAF,
 The MNA,
 The ITA,
 An NTA.
 The certification authority,
 An official measurer,
No claim arising from these class rules can be entertained.
A.3.3 Notwithstanding anything contained herein, the certification authority has the authority to withdraw a certificate and shall do so on the request of the ISAF.

A.4 ADMINISTRATION OF THE CLASS
A.4.1 ISAF has delegated its administrative functions of the class to MNAs. The MNA may delegate part or all of its functions, as stated in these class rules, to an NTA.
A.4.2 In countries where there is no MNA, or the MNA does not wish to administrate the class, its administrative functions as stated in these class rules shall be carried out by the ITA which may delegate the administration to an NTA.

A.5 ISAF RULES
A.5.1 These class rules shall be read in conjunction with the ERS.
A.5.2 Except where used in headings, when a term is printed in “**bold**” the definition in the ERS applies and when a term is printed in “*italics*” the definition in the RRS applies.

A.6 **SAILING INSTRUCTIONS**
A.6.1 These **class rules** shall not be varied by sailing instructions except as provided by A.8.2.
A.6.2 At World, Continental or Regional Championships the sailing instructions may vary these **class rules** only with the agreement of the ITA.

A.7 **CLASS RULES AMENDMENTS**
A.7.1 Amendments to these **class rules** shall be proposed by the ITA and require to be approved by the ISAF in accordance with the ISAF Regulations.

A.8 **CLASS RULES INTERPRETATIONS**
A.8.1 **GENERAL**
Interpretation of **class rules** shall be made in accordance with the ISAF Regulations.
A.8.2 **AT AN EVENT**
Any interpretation of **class rules** required at an event may be made by an international jury constituted in accordance with the RRS. Such interpretation shall only be valid during the event and the organising authority shall, as soon as practical after the event, inform the ISAF, the MNA and the ITA.

A.9 **INTERNATIONAL CLASS FEE(S) AND ISAF BUILDING PLAQUE**
A.9.1 The licensed builder shall pay the International Class Fee(s).
A.9.2 ISAF shall, after having received the International Class Fee for the hull, send the ISAF Building Sticker, ITA plaque and a measurement form to the licensed hull builder.
A.9.3 The International Class Fee shall be on the basis of 3.0 percent of the average retail price of the boat in standard form, without sails, in Britain. This Fee shall incorporate the designer's fee of 1.5 percent, the International Tempest Association administration fee of 1.1 percent and the International Sailing Federation fee of 0.4 percent.
The amount of the International Class Fee shall always be assessed on the above basis and shall be reviewed and if necessary revised on the recommendation of the International Tempest Association.

A.10 **SAIL NUMBERS**
A.10.1 Sail numbers shall be identical to the **hull number**
A.11 CERTIFICATION
A.11.1 For a hull not previously certified, all items required by the measurement(s) form to be measured shall be measured by an official measurer and the details entered onto the form(s).
A.11.2 The measurement form(s), and certification fee if required, shall be sent to the certification authority in the country where the hull is to be registered after completion of measurement.
A.11.3 Upon receipt of a satisfactorily completed measurement form(s) and certification fee if required within the time limit, the certification authority shall issue a certificate.
A.11.4 The certification authority shall retain the original measurement form(s), which shall be transferred to the new certification authority upon request if the hull is exported.

A.12 VALIDITY OF CERTIFICATES
A.12.1 A certificate becomes invalid upon:
(a) The date of expiry,
(b) Change of ownership,
(c) Withdrawal by the certification authority,
(d) The issue of another certificate,

A.13 COMPLIANCE WITH CLASS RULES
A.13.1 The owner is responsible for the Measurement Certificate or certified measurement form remaining valid.
A.13.2 A boat ceases to comply with the class rules upon:
(a) The use of equipment which does not comply with the class rules,
(b) The use of equipment that does not comply, or that causes the boat not to comply, with limitations recorded on the certificate,
(c) Alteration or repair to items required by the measurement form(s) to be measured, other than permitted routine maintenance and minor repairs.
(d) A change of class rules that causes equipment in use to cease to be permitted, except where the equipment may comply with the class rules in force at the time of its initial fundamental measurement.

A.14 RE-CERTIFICATION
A.14.1 A hull may be re-certified by the issue of a new certificate, showing dates of initial and new fundamental measurement as applicable:
(a) WHEN A CERTIFICATE BECOMES INVALID UPON CHANGE OF OWNERSHIP
The new owner shall apply for re-certification by sending the old certificate, and fee if required, to the CA in the country where the hull is to be re-certified. If this CA is different from the previous CA then the new CA should receive the hull measurement form(s) from the old CA prior to re-certification.
(b) WHEN A CERTIFICATE HAS BEEN WITHDRAWN, OR WHEN THE CERTIFICATE AND MEASUREMENT FORM(S) CANNOT BE LOCATED

The owner shall arrange for fundamental measurement as required for initial certification and then apply for re-certification by sending the hull measurement form(s), and fee if required, to the CA in the country where the hull is to be re-certified. The ITA may issue the hull a new identification number(s).

A.14.2 A boat that has ceased to comply with its certificate it may be brought into compliance:

(a) By carrying out fundamental measurement of the affected equipment.

A.15 DEFINITIONS

A.15.1 Schedule A boats - All boats built before 1990 are schedule A boats.
A.15.2 Schedule B boats - All boats built after 1990 are schedule B boats.

Section B – Boat Eligibility

For a boat to be eligible when racing, the rules in this section shall be complied with.

B.1 CERTIFICATE

B.1.1 The hull shall have a valid certificate including corrector weight details.

B.2 CERTIFICATION MARKS

B.2.1 Items that require certification marks shall be so marked.

B.3 CLASS ASSOCIATION STICKER

B.3.1 A valid class association sticker shall be affixed to the hull in a conspicuous position.
PART II – REQUIREMENTS AND LIMITATIONS

The crew and the boat shall comply with the rules in Part II when racing. Measurement to check conformity with rules of Section C is not part of fundamental measurement. The rules in Part II are closed class rules. Measurement shall be carried out in accordance with the ERS except where varied in this Part.

Section C – Conditions for Racing

C.1 GENERAL

C.1.1 RULES

(a) The following RRS rules shall not apply:
 (1) The racing rule RRS 49.1 is altered such that a trapeze may be used.
 (2) Sail identification shall comply with the RRS except as provided by C10.6(b)

(b) The ERS Part 1 – Use of Equipment shall apply.

C.2 CREW

C.2.1 LIMITATIONS

(a) The crew shall consist of 2 persons.
(b) The trapeze shall not be used by more than one person at any time.
(c) No crew member shall be substituted during an event of less than 6 consecutive days, unless authorised in writing by the race committee or jury.

C.3 PERSONAL EQUIPMENT

C.3.1 MANDATORY

(a) Personal buoyancy for all crew members.
(b) Trapeze harness. The weight of the trapeze harness shall not exceed 3.5 kg and shall have positive buoyancy.

C.4 ADVERTISING

C.4.1 LIMITATIONS

Advertising shall only be displayed in accordance with Category C of the ISAF Advertising Code.
C.5 PORTABLE EQUIPMENT

C.5.1 FOR USE

(a) **Mandatory**
 (1) One anchor of not less than 2kg in weight and with not less than 15m of line of a minimum 5mm in diameter.

(b) **Optional**
 (1) Electronic or mechanical timing devices
 (2) Electronic or Mechanical Compass(s)
 (3) Wind Indicator

C.5.2 NOT FOR USE

(a) **Mandatory**
 (1) Two paddles of a minimum 1000mm long and of 0.4kg minimum weight.

(b) **Optional**
 (1) Mooring line
 (2) Towing rope of a minimum 15 m long of not less than 5 mm in diameter.

C.6 BOAT

C.6.1 WEIGHT

The weight of the **boat** in dry condition minimum 480 kg
The weight shall be taken excluding **sails** and all portable equipment as listed in C5.

C.6.2 CORRECTOR WEIGHTS

(a) **Corrector weights** of metal shall be permanently fastened to the forward cockpit bulkhead with no part of the correctors less than 200mm from the cockpit floor when the **boat** weight is less than the minimum requirement.

(b) The total weight of such **corrector weights** shall not exceed 15kg. See also rule B.1.1.

C.6.3 FLOTATION

(a) The **hull** shall be fully decked and have closed cell foam flotation element(s), which are to be installed as follows:
 Forward – To provide 150kg minimum positive buoyancy in the forward buoyancy compartment and;
 Centre/Aft – To provide 150kg minimum positive buoyancy in the centre and/or aft buoyancy compartment with no part more than 1370mm from the aft cockpit bulkhead.

(b) Owners are responsible for maintaining the effectiveness of the buoyancy compartments and ensuring they are watertight. The hatch into the aft buoyancy compartment need not be entirely watertight.
C.7 HULL

C.7.1 MODIFICATIONS AND MAINTENANCE

(a) The hull shell, deck, bulkheads, and Bridge deck shall not be altered in any way except as permitted by these class rules and shall not decrease the effectiveness of the buoyancy compartments.

(b) Holes not bigger than necessary for the installation of fittings

(c) Routine maintenance such as painting, minor repairs and polishing is permitted without re-measurement and re-certification.

(d) Hull mouldings may be sanded and painted and/or polished and have scratches repaired providing the shape is not altered.

(e) If any hull moulding is repaired in any other way than described in C.7.1(c), an official measurer shall verify on the certificate that the external shape is the same as before the repair and that no substantial stiffness, or other, advantage has been gained as a result of the repair. The official measurer shall also describe the details of the repair on the certificate.

C.7.2 FITTINGS

(a) Mandatory

(1) Two openings, each 110mm x 180mm maximum dimensions for cockpit self bailers.

<table>
<thead>
<tr>
<th>minimum</th>
<th>maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trapeze Straps. Not more than two flexible toe straps are permitted on each side. Distance between fixing points</td>
<td>160mm</td>
</tr>
</tbody>
</table>

(b) Use

(1) Hand hole covers and drainage plugs shall be kept in place at all times.

(2) Trapeze toe straps shall not permit the crew's feet or normal shoe to be supported out of contact with the hull or gunwale rubbing bead or permitted non-slip material.

C.8 HULL APPENDAGES

C.8.1 MAINTENANCE

(a) Routine maintenance such as painting, minor repairs and polishing is permitted without re-measurement and re-certification.

C.8.2 LIMITATIONS

(a) Only one centreboard/keel and one rudder blade shall be used during an event of less than 6 consecutive days, except when a hull appendage has been lost or damaged beyond repair.

(b) The fore and aft position of the keel may be adjusted within the limits of the keel slot, but the position of the keel shall not be altered when racing. The forward edge of the fin, where it meets the underside of the hull, shall be not more than 3865mm nor less than 3805mm from the transom, measured along the centreline of the hull.
C.9 RIG

C.9.1 MAINTENANCE
Routine maintenance such as minor repairs is permitted without re-measurement and re-certification.

C.9.2 LIMITATIONS
(a) Only one set of spars and standing rigging shall be used during an event of less than 6 consecutive days, except when an item has been lost or damaged beyond repair.
(b) Two spinnaker poles may be carried onboard and used.

C.9.3 MAST
(a) Dimensions

<table>
<thead>
<tr>
<th></th>
<th>minimum</th>
<th>maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>The extreme lower end of the mast located</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above the cockpit floor extended as necessary</td>
<td></td>
<td>40mm</td>
</tr>
<tr>
<td>Distance between the Lower Point and its closest point of the cockpit floor</td>
<td>1165mm</td>
<td>1175mm</td>
</tr>
<tr>
<td>The mast position from hull datum point as Defined in D.1.3</td>
<td>..</td>
<td>4190mm</td>
</tr>
</tbody>
</table>

(b) Use
The spar shall be stepped above the cockpit floor, aft of the forward main bulkhead in the mast step in such a way that the heel is not capable of moving.

C.9.4 BOOM
(a) Dimensions

<table>
<thead>
<tr>
<th></th>
<th>minimum</th>
<th>maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit mark width</td>
<td>..</td>
<td>10 mm</td>
</tr>
<tr>
<td>Boom point distance</td>
<td>..</td>
<td>... 3380 mm</td>
</tr>
</tbody>
</table>

(b) Use
(1) The intersection of the aft edge of the mast spar and the top of the boom spar, each extended as necessary, shall not be below the upper edge of the mast lower limit mark when the boom spar is at 90° to the mast spar.

C.9.5 SPINNAKER POLE
(a) Fittings
Fittings are optional.

C.9.6 STANDING RIGGING
(a) Dimensions

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
</table>
| The longitudinal distance between the intersection of the forestay and the centreline of the deck,
and the HDL measured parallel to the deck 6249mm … 6435mm

(b) Use
(1) The effective length of a shroud may be altered.
(2) The effective length of a forestay may be altered.

C.9.7 RUNNING RIGGING
(a) Use
(1) The attachment of any control wire adjacent to the shroud to control its length shall be attached to the side deck within a radius of 90mm of the centre of the shroud plate.
(2) On Schedule A boats the shroud control wire shall not take more than 25% of the load of the shroud, and on schedule B boats the shroud control wire shall not take more than 50% of the load.

(b) Materials
Materials are optional.

C.10 SAILS
C.10.1 MAINTENANCE
(a) Routine maintenance such as minor repairs are permitted without re-measurement and re-certification.

C.10.2 LIMITATIONS
(a) Not more than 1 mainsail, 1 jib and 2 spinnakers shall be carried aboard.
(c) Not more than 2 mainsails, 2 jibs, and 3 spinnakers shall be used during an event of less than 6 consecutive days, except when a sail has been lost or damaged beyond repair.

C.10.3 MAINSAIL
(a) Use
(1) The sail shall be hoisted on a halyard. The arrangement shall permit hoisting and lowering of the sail at sea.
(2) The highest visible point of the sail, projected at 90° to the mast spar, shall not be set above the lower edge of the mast upper limit mark. The intersection of the leech and the top of the boom spar, each extended as necessary, shall not be behind the fore side of the boom outer limit mark.
(3) Luff and foot bolt ropes shall be in the spar grooves or tracks.

(b) Identification
The sail numbers shall comply with the RRS.

C.10.4 JIB
(a) Use
The sail shall be hoisted on a halyard. The arrangement shall permit hoisting and lowering of the sail at sea.
C.10.6 SPINNAKER

(a) Use
 Only one spinnaker may be hoisted at a time.

(b) Identification
 RRS rule G.1.3(d) is modified so that National letters are not mandatory.
Section D – Hull

D.1 GENERAL

D.1.1 RULES
(a) The hull shall comply with the class rules in force at the time of initial certification.

MOULDS
(a) The hull shall be constructed only from official moulds. These moulds shall be checked by an Official Measurer appointed by the National Authority using Measurement Templates. These checks shall take place prior to commencement of production.
(b) Application for the issue of new moulds and patterns for hull and keel, and measurement templates shall be made to the ITA and ISAF, which shall authorise delivery from the approved source.

D.1.2 CERTIFICATION
See Rule A.11.

D.1.3 DEFINITIONS
(a) Hull Datum Line (HDL). Vertical centre line of the transom excluding the aft deck overhang.

D.1.4 IDENTIFICATION
(a) The hull number and the mould number shall be engraved on the forward face of the aft bulkhead approximately on the centerline. Each digit of the number shall be a minimum of 20 mm in height and 15 mm in width except for the number 1.
(b) For boats built in 1999 or later, the hull number, which is identical to the sail number, shall be obtained from the ISAF.

D.1.5 BUILDERS
(a) The hull shall be built by a builder licensed by ISAF.
(b) All moulds shall be approved by ISAF.

D.2 HULL COMPONENTS

D.2.1 THE HULL COMPONENTS
(a) Schedule “A” boats - hull shell, deck, buoyancy tanks, gunwale and rubbing strakes, bulkheads, mast partners, bridge deck, aft hatch cover and hull girders.
(b) Schedule “B” boats –hull shell, deck, buoyancy tanks, gunwale and rubbing strakes, bulkheads, deck extension (mast partners), bridge deck, aft hatch cover, hull girders, forward bulkhead hatch cover, and keel slot cover.
D.2.2 MATERIALS
(a) All hull components shall comply with the Tempest Building Specifications and the Construction Manual unless otherwise specified in these class rules.

D.2.3 CONSTRUCTION
(a) All hull components shall comply with the Tempest Building Specifications and drawings unless otherwise specified in these class rules.

D.3 GUNWALE AND RUBBING STRAKES

D.3.1 MATERIALS
(a) Timber, Plastic or some resilient material.

D.3.2 CONSTRUCTION
(a) Schedule B boat the rubbing strake may be discontinued in the centre section from points on the deck edges at 1580mm and 3880mm from the aft edge of the aft deck at its longitudinal centreline. In this section the sheerline shall be flush with the outer edge of the rubbing strake.

D.4 MAST PARTNERS

D.4.1 MATERIALS
Aluminium which may be anodised or a fibreglass laminate moulding.

D.5 TRAVELLER TRACK

D.5.1 CONSTRUCTION
(a) On schedule A boats the traveller track shall extend beyond the bridge deck moulding and onto the side decks themselves. On schedule B boats the traveller track is optional. If fitted, it shall extend, where possible, the full length of the bridge deck moulding.

D.6 ASSEMBLED HULL

D.6.1 FITTINGS

Optional
(1) Halyard tensioners
(2) Mainsail sheet blocks, fairleads and cleats
(3) Mainsail Cunningham blocks, fairleads and cleats
(4) Stemhead fitting
(5) Headsail sheet blocks, fairleads and cleats
(6) Headsail Cunningham blocks, fairleads and cleats
(7) Headsail Barber hauler fairleads, blocks and cleats
(8) Spinnaker sheet and guy fairleads, blocks and cleats
(9) Spinnaker Barber hauler fairleads, blocks and cleats
(10) Spinnaker up/down haul fairleads, blocks and cleats
(11) Spinnaker sock
(12) Outhaul fairleads, blocks and cleats
(13) Cunningham fairleads, blocks and cleats
(14) Shroud/forestay adjustment fairleads, blocks and cleats
(15) Kicker fairleads, blocks and cleats
(16) Tiller lock
(17) Toe straps not capable of extending outboard
(18) Hand holds on deck
(19) Stowage clips or bags for paddle(s), spinnaker pole, sail bags and other equipment
(20) Compasses
(21) Toe chocks
(22) Stern rubbing bead. Section as gunwale rubbing bead.
(23) Keel slot fairing plates and rollers.
(24) Cockpit drainage tube flaps
(25) Drain plugs

D.6.2 PIERCING
The following holes may be made, provided the integrity of the buoyancy tanks are maintained.
(a) In accordance with the construction and measurement drawings.
(b) For permitted watertight tubes or slots through the buoyancy tanks.
(c) Permitted access holes.

Watertight Tubes
(1) One tube connecting bow bulkhead to forward cockpit bulkhead for a control line.
(2) A spinnaker chute tube connecting bow bulkhead to forward cockpit bulkhead or cockpit side deck.
(3) One tube connecting spinnaker well to forward bulkhead.
(4) Two tubes connecting aft cockpit bulkhead to transom for cockpit drainage.
(5) One tube connecting each cockpit side to aft deck for spinnaker sheets.
(6) **Rudder** shaft tube.

Access Holes
(1) On Schedule “B” **boats** one aperture for an inspection hatch with not more than two holes for inspection ports in hatch cover.
(2) Three inspection ports in cockpit side deck.
(3) One inspection port in each side deck

D.6.3 LIFTING EYES
(a) Foreward - A hole shall be provided in the keel supporting angles for attachment of the forward lifting strop.
(b) Aft - One or two aft lifting eyes shall be located as shown on the Construction Plans.
(c) Capacity - Each lifting eye and its attachment to the boat shall be capable of withstanding a vertical load of 500kg.

D.6.4 DIMENSIONS

The hull shall be measured according to the Hull Measurement Plan, which is part of these rules.

The keel line shall be taken as the intersection line from transom to stem of the hull shell and the **hull** centreplane.

The sections shall be taken as vertical, transverse planes at the following positions:

- Section H1: at 300 mm from HDL as defined in D.1.3
- Section H2: at 1520 mm from HDL as defined in D.1.3
- Section H3: at 2750 mm from HDL as defined in D.1.3
- Section H4: at 4750 mm from HDL as defined in D.1.3
- Section H5: at 5500 mm from HDL as defined in D.1.3

The baseline shall be on the centreplane of the **hull** at the following vertical distances:

- 172 mm from the **hull** shell at section H5 : 330 mm from the **hull** shell at the transom

Minimum	Maximum
6680 mm |

Hull length excluding aft deck overhang ... 6680 mm

Vertical distance from baseline to underside of **hull** shell;

- At transom ... 330 mm 330 mm
- At section H1 ... 302 mm 308 mm
- At section H2 ... 203 mm 213 mm
- At section H3 ... 127 mm 139 mm
- At section H4 ... 111 mm 121 mm
- At section H5 ... 172 mm 172 mm

Transom horizontal curve ... 54 mm 66 mm

Radius between skin of boat and the surface of the transom 6 mm

The angle between the base line and the transom 88.5° 91.5°

Vertical distance from the **hull** shell to underside of keel

- At the intersection with **hull** and aft edge of the fin 865 mm 900 mm

Forestay attachment point from HDL as

- Defined in D.1.3 ... 6249 mm 6435 mm

Beam of **hull**, excluding rubbing strakes and fittings, at sheerline, at sections H1-5;

- Horizontal distance from inner edge of template to Sheerline ... 19 mm 38 mm
- Vertical distance from upper edge of template to Sheerline ... 0 mm 16 mm

Template H6 applied to the stem, distance from top of Template to stem ... 46 mm 56 mm
Longitudinal distance from HDL as defined in D.1.3.

To intersection of keel trailing edge and hull 3290 mm
To intersection of keel leading edge and hull 3865 mm.

Top forward edge of rudder blade to HDL as defined in D.1.3 ... 610 mm 650 mm
Forward cockpit bulkhead to HDL as defined in D.1.3 ... 4510 mm 4590 mm
Aft cockpit bulkhead to HDL as defined in D.1.3 .. 1490 mm 1535 mm

Distance from HDL as defined in D.1.3 to centre of shroud plate holes .. 3915 mm
Shroud plate to sheerline .. 20 mm
Sheer at forward cockpit bulkhead 135 mm 155 mm
Cockpit floor depth at forward cockpit bulkhead 365 mm 385 mm
Sheer at aft cockpit bulkhead 35 mm 55 mm
Curve of aft deck at aft cockpit bulkhead inside cockpit side1 mm...... 31 mm
Cockpit floor depth from sheerline at aft cockpit bulkhead 285 mm 305 mm
Gunwale rubbing strakes;
width .. 13 mm 19 mm
distance from transom excluding overhang of aft deck; ... 25 mm
distance from stemhead excluding stemhead fitting ... 130 mm

Overall height of keel angle .. 40 mm
Distance from HDL as defined in D.1.3 to aft end of mast partners .. 4190 mm
Drain holes in bow bulkhead .. 7 mm
Cockpit self bailer holes fore and aft 180 mm
Cockpit self bailer holes athwart 110 mm
Cockpit drain tubes internal diameter 80 mm
Watertight tube internal diameter bow to cockpit bulkhead 55 mm
Watertight tube internal diameter spinnaker stowage well 10 mm 20 mm
Inspection ports diameter ... 155 mm
Forward bulkhead inspection hole if fitted fore and aft 600 mm
Forward bulkhead inspection hole if fitted athwart 500 mm
Spinnaker chute tube internal diameter 210 mm
Spinnaker sheet tube internal diameter 55 mm
Inspection holes in cockpit floor fore and aft 250 mm
Inspection holes in cockpit floor athwart 155 mm

Chute mouth, including any radius or fairing into the normal and general surface of the foredeck, from HDL as defined in D.1.3 ... 5865 mm
Inspection port in side deck from shroud plate 230 mm
Hatch opening in aft deck fore and aft .. 475 mm
Hatch opening in aft deck athwart.. 475 mm
Rudder housing slot in aft deck fore and aft.............................. 365 mm 395 mm
Rudder housing slot in aft deck athwart................................. 43 mm 57 mm

D.6.5 WEIGHTS

<table>
<thead>
<tr>
<th>Hull weight including rudder</th>
<th>minimum</th>
<th>maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>226 kg</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hull weight including all hull appendages</th>
<th>minimum</th>
<th>maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>453 kg</td>
<td></td>
</tr>
</tbody>
</table>

Schedule B boats only:
Keel slot cover... 5 kg

D.6.6 HULL CORRECTOR WEIGHTS

(a) Corrector weights of metal shall be permanently fastened to the forward cockpit bulkhead with no part of the correctors less than 200mm from the cockpit floor when the boat weight is less than the minimum requirement.

(b) The total weight of such corrector weights shall not exceed 15kg. See also rule B.1.1.
Section E – Hull Appendages

E.1 GENERAL

E.1.1 RULES
(a) Hull appendages shall comply with the class rules in force at the time of certification.

E.1.2 CERTIFICATION
(a) The official measurer shall certify hull appendages and shall sign and date the certification mark.
(b) An MNA may appoint one or more persons at a manufacturer to measure and certify hull appendages produced by that manufacturer in accordance with ISAF guidelines.

E.1.3 MANUFACTURERS
(a) The hull appendages shall be made by manufacturers licensed by ISAF.

E.2 KEEL

E.2.1 MATERIALS
(a) The fin shall be of mild steel and may be galvanised, zinc sprayed, zinc coated or stainless steel.
(b) The keel may be glass reinforced plastic coated or plastic coated.
(c) The bulb shall be made of lead, unless otherwise specified in Rule E.2.2(c)

E.2.2 CONSTRUCTION
(a) The keel shall be manufactured from a pattern approved by the ISAF.
(b) The shape of the bulb shall be checked, after attachment to the fin, by Measurement Templates as shown on the Measurement Plan.
(c) The cast bulb may be reduced in weight by the removal of lead and the substitution of a lighter material up to the minimum weight requirement of the keel.
(d) The fin shall be arranged so as to be removable from the hull. Spacers and/or filling compound may be used to prevent the fin from moving horizontally within the slot. Filling compound shall not be used outside the hull to form a radius or fillet between the fin and hull.
(e) The forward and aft edges of the fin shall be parallel.
(f) The finished fin shall be of uniform thickness, except that the thickness may be reduced at the forward and aft edge.

E.2.3 DIMENSIONS

<table>
<thead>
<tr>
<th></th>
<th>minimum</th>
<th>maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness of finished fin</td>
<td>9.5 mm</td>
<td>13 mm</td>
</tr>
<tr>
<td>The width of the exposed section of the fin, measured at right angles to the forward edge</td>
<td>503 mm</td>
<td>513 mm</td>
</tr>
</tbody>
</table>
Reduction of thickness of fin from forward edge............................. 80 mm
Reduction of thickness of fin from aft edge 105 mm
Horizontal distance from centre of aft end of keel
bulb to fin at forward edge .. 882 mm 908 mm
Radius at the intersection of the fin and the upper
surface of the bulb ... 4 mm

E.2.4 WEIGHS
minumum maximum
Keel ... 200 kg 232 kg

E.3 RUDDER BLADE, RUDDER STOCK AND TILLER

E.3.1 MATERIALS
(a) The rudder blade shall be made with only the following materials:- wood, resin reinforced with glass fibre, or plastic foam (which includes micro balloons) and may be painted.

E.3.2 CONSTRUCTION
(a) The profile shall conform to the Measurement Template.
(b) The section is optional
(c) The design of the tiller, tiller extension and rudder frame are optional

E.3.3 FITTINGS
(a) Mandatory
 (1) Tiller
 (2) Tiller extension
(b) Optional
 (1) Tiller extension clip

E.3.4 DIMENSIONS
minumum maximum
The edge of the rudder to the edge of the template R.............. 7 mm
Horizontal section ... 50 mm
Horizontal section within 400mm from the upper edge
at its point of greatest thickness. .. 40 mm
Rudder stock diameter ... 22 mm

E.3.5 WEIGHS
minumum maximum
Rudder, including the rudder stock ... 6.5 kg
Section F – Rig

F.1 PARTS

F.1.1 MANDATORY
 (a) Mast
 (b) Boom
 (c) Standing rigging
 (d) Running rigging

F.1.2 OPTIONAL
 (a) Spinnaker poles

F.2 GENERAL

F.2.1 RULES
 (a) The spars and their fittings shall comply with the class rules in force at the time of certification of the spar.
 (b) The standing and running rigging shall comply with the class rules.

F.2.2 CERTIFICATION
 (a) The official measurer shall certify spars and shall sign and date the certification mark.
 (b) No certification of standing and running rigging is required.
 (c) An MNA may appoint one or more persons at a manufacturer to measure and certify spars produced by that manufacturer in accordance with ISAF guidelines.

F.2.3 DEFINITIONS
 (a) The Mast Datum Point is the Lower Point

F.2.4 MANUFACTURER
 (a) Manufacturer is optional.

F.3 MAST

F.3.1 MATERIALS
 (a) The spar shall be of aluminium alloy. It may be anodised.

F.3.2 CONSTRUCTION
 (a) The spar extrusion shall include a fixed sail groove or track, which may or may not be integral with the spar but shall be of the same material.
 (b) The taper shall be convex or straight and local hollows of more than 3mm on the longitudinal surface of the tapered portion are prohibited.

F.3.3 FITTINGS
 (a) Mandatory
 (1) Mast head fitting
(2) Shroud tangs
(3) A set of spreaders
(4) Mainsail halyard sheave box
(5) Headsail halyard sheave box
(6) Spinnaker halyard sheave box
(7) Spinnaker pole fitting
(8) Spinnaker pole lift block with attachment
(9) Spinnaker pole downhaul block with attachment
(10) Gooseneck
(11) Heel fitting
(12) Sheaves for halyards

(b) **Optional**
(1) One mechanical wind indicator
(2) Compass bracket
(3) Kicking strap attachment

F.3.4 **DIMENSIONS**

<table>
<thead>
<tr>
<th></th>
<th>minimum</th>
<th>maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mast spar cross section between the lower point height and the forestay height.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fore-and-aft</td>
<td>91 mm</td>
<td></td>
</tr>
<tr>
<td>transverse</td>
<td>72 mm</td>
<td></td>
</tr>
<tr>
<td>Mast spar cross-section between the upper point height and the forestay height.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fore-and-aft</td>
<td>56 mm</td>
<td></td>
</tr>
<tr>
<td>transverse</td>
<td>49 mm</td>
<td></td>
</tr>
<tr>
<td>Mast spar cross-section ratio, fore and aft : transverse</td>
<td>1.27:1</td>
<td></td>
</tr>
<tr>
<td>Mast taper point from datum point</td>
<td>6060 mm</td>
<td></td>
</tr>
<tr>
<td>Mast limit mark width</td>
<td>10 mm</td>
<td></td>
</tr>
<tr>
<td>Lower point to upper point</td>
<td>7620 mm</td>
<td></td>
</tr>
<tr>
<td>Forestay height</td>
<td>5670 mm</td>
<td>5945 mm</td>
</tr>
<tr>
<td>Shroud height</td>
<td>5670 mm</td>
<td>5945 mm</td>
</tr>
<tr>
<td>Spinnaker Pole fitting projection</td>
<td>50 mm</td>
<td></td>
</tr>
<tr>
<td>Spinnaker hoist height</td>
<td>...</td>
<td>6100 mm</td>
</tr>
</tbody>
</table>

F.3.5 **WEIGHTS**

<table>
<thead>
<tr>
<th></th>
<th>minimum</th>
<th>maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mast weight</td>
<td>17.5 kg</td>
<td></td>
</tr>
<tr>
<td>Tip weight</td>
<td></td>
<td>7.75 kg</td>
</tr>
</tbody>
</table>

F.4 **BOOM**

F.4.1 **MATERIALS**

(a) The **spar** shall be of aluminium alloy. It may be anodised
F.4.2 CONSTRUCTION
(a) The **spar** extrusion and shall include a fixed sail groove or track which may or may not be integral with the **spar** but shall be of the same material.
(b) The **boom** section shall be uniform between the points on the **boom** 50mm and 3330mm from its forward end.

F.4.3 FITTINGS
(a) **Mandatory**
 (1) Mainsheet blocks with attachments
 (2) Clew outhaul attachments
 (3) Kicking strap fitting
 (4) Gooseneck attachment
(b) **Optional**
 (1) Strops for mainsheet blocks
 (2) Spinnaker pole stowage fittings
 (3) Clew outhaul blocks

F.4.4 DIMENSIONS

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boom spar cross section between the points on the boom 50mm and 3330mm from its forward end.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vertical</td>
<td></td>
<td>63 mm</td>
</tr>
<tr>
<td>transverse</td>
<td></td>
<td>53 mm</td>
</tr>
</tbody>
</table>

The **boom** excluding fittings listed in F.4.3 shall pass through a circular hole.

Diameter 90 mm

F.5 SPINNAKER POLE

F.5.1 MANUFACTURER
(a) Manufacturer is optional.

F.5.2 MATERIALS
(a) The **spar** shall be of aluminium alloy. It may be anodised.

F.5.3 FITTINGS
(a) Fittings are optional.

F.5.4 DIMENSIONS

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinnaker pole length</td>
<td></td>
<td>2565 mm</td>
</tr>
</tbody>
</table>

F.6 STANDING RIGGING

F.6.1 MATERIALS
(a) The standing **rigging** shall be of stainless steel.
F.6.2 CONSTRUCTION

(a) Mandatory
 (1) The forestay and shrouds shall be of circular section.

(b) Optional
 (1) The material of the backstay.

F.6.3 FITTINGS

(a) Mandatory
 (1) Forestay
 (2) Shroud

(b) Optional
 (1) Backstay
 (2) Shroud adjustment equipment
 (3) Forestay adjustment equipment
 (4) Lower shrouds

F.7 RUNNING RIGGING

F.7.1 MATERIALS

(a) Materials are optional.

F.7.2 CONSTRUCTION

(a) Mandatory
 (1) Mainsail halyard
 (2) Mainsail sheet
 (3) Kicking strap
 (4) Headsail halyard
 (5) Headsail sheets
 (6) Spinnaker halyard
 (7) Spinnaker sheet and guy
 (8) Spinnaker pole lift and downhaul

(b) Optional
 (1) Mainsail Cunningham line
 (2) Mainsail outhaul
 (3) Headsail Cunningham line
 (4) Single line headsail Barber haulers
 (5) Single line spinnaker Barber haulers
 (6) Shroud control lines
 (7) Forestay control lines
F.7.3 FITTINGS

(a) Optional

(1) One block or eye in each headsail Barber hauler to run on headsail sheet

(2) One block or eye in each spinnaker Barber hauler to run on spinnaker sheet or guy
Section G – Sails

G.1 PARTS

G.1.1 MANDATORY
 (a) Mainsail
 (b) Headsail

G.1.2 OPTIONAL
 (a) Spinnaker

G.2 GENERAL

G.2.1 RULES
 Sails shall comply with the class rules in force at the time of certification.

G.2.2 CERTIFICATION
 (a) The official measurer shall certify mainsails and headsails in the tack and
 spinnakers in the head and shall sign and date the certification mark.
 (b) Sail Labels - An officially numbered Tempest Sail Label or button shall be
 permanently affixed, near to the tack of each mainsail and jib, and near the
 head of each spinnaker.
 (c) An MNA may appoint one or more persons at a sail maker to measure and
 certify sails produced by that manufacturer in accordance with ISAF
 guidelines.

G.2.3 SAILMAKER
 Sail maker is optional.

G.3 MAINSAIL

G.3.1 IDENTIFICATION
 (a) The Class Insignia is the letter “T” and shall be placed on the sail in
 accordance with the RRS.

G.3.2 MATERIALS
 The ply fibre materials are optional.

G.3.3 CONSTRUCTION
 (a) The construction shall be: soft sail, single ply sail.
 (b) The body of the sail may consist of either woven ply or laminated ply or
 a combination of the two.
 (c) The sail shall have four batten pockets in the leech.
 (d) The leech shall not extend aft of straight lines between:
 (1) the aft head point and the intersection of the leech and the upper
 edge of the nearest batten pocket,
(2) the intersection of the leech and the lower edge of a batten pocket and the intersection of the leech and the upper edge of an adjacent batten pocket below,

(3) the clew point and the intersection of the leech and the lower edge of the nearest batten pocket.

(e) The following are permitted: Stitching, glues, tapes, bolt ropes, corner eyes, headboard with fixings, Cunningham eye or pulley, batten pocket patches, batten pocket elastic, batten pocket end caps, mast and boom slides, leech line with cleat, tell tales, sail shape indicator stripes, sail identification, sail maker labels, royalty label, sail button, certification mark, a maximum of two windows.

G.3.4 DIMENSIONS

<table>
<thead>
<tr>
<th></th>
<th>minimum</th>
<th>maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leech length</td>
<td></td>
<td>8300 mm</td>
</tr>
<tr>
<td>Quarter width</td>
<td></td>
<td>3080 mm</td>
</tr>
<tr>
<td>Half width</td>
<td></td>
<td>2370 mm</td>
</tr>
<tr>
<td>Three-quarter width</td>
<td></td>
<td>1410 mm</td>
</tr>
<tr>
<td>Top width</td>
<td></td>
<td>160 mm</td>
</tr>
<tr>
<td>Primary reinforcement</td>
<td></td>
<td>400 mm</td>
</tr>
<tr>
<td>Window Area</td>
<td></td>
<td>0.2 m²</td>
</tr>
<tr>
<td>Distance from nearest edge of sail</td>
<td></td>
<td>1500 mm</td>
</tr>
</tbody>
</table>

Batten pocket length:
- Top pocket:
 - inside: 1500 mm
- Other pockets:
 - inside: 1050 mm

Batten pocket width:
- inside: 50 mm

Head point to intersection of leech and centreline of uppermost batten pocket: 1650 mm

Clew point to intersection of leech and centreline of lowermost batten pocket: 1650 mm

G.4 HEADSAIL

G.4.1 MATERIALS

(a) The ply fibre materials are optional.

G.4.2 CONSTRUCTION

(a) The construction shall be: soft sail, single ply sail.

(b) The body of the sail may consist of either woven ply or laminated ply or a combination of the two.

(c) The leech shall not extend beyond a straight line from the aft head point to the clew point.
(d) The following are permitted: A maximum of two windows, Stitching, glues, tapes, corner eyes, hanks, poppers, Velcro hanks, luff wire, leech line with cleat, tell tales, sail shape indicator stripes, sail maker labels, royalty label, sail button, certification mark.

G.4.3 DIMENSIONS

<table>
<thead>
<tr>
<th></th>
<th>minimum</th>
<th>maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luff length</td>
<td></td>
<td>6350 mm</td>
</tr>
<tr>
<td>Leech length</td>
<td></td>
<td>5980 mm</td>
</tr>
<tr>
<td>Foot length</td>
<td></td>
<td>2490 mm</td>
</tr>
<tr>
<td>Foot median</td>
<td></td>
<td>6250 mm</td>
</tr>
<tr>
<td>Top width</td>
<td></td>
<td>40 mm</td>
</tr>
<tr>
<td>Primary reinforcement</td>
<td></td>
<td>400 mm</td>
</tr>
<tr>
<td>Window:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td></td>
<td>0.1 m²</td>
</tr>
<tr>
<td>Distance from nearest edge of sail</td>
<td></td>
<td>150mm - 1500mm</td>
</tr>
</tbody>
</table>

G.5 SPINNAKER

G.5.1 MATERIALS

(a) The ply fibre materials are optional.

G.5.2 CONSTRUCTION

(a) The construction shall be: soft sail, single ply sail.

(b) The following are permitted: Stitching, glues, tapes, corner eyes, recovery line eyes, tell tales, sail maker label, royalty labels, sail button, sail identification, certification mark.

(c) The spinnaker shall be symmetrical about a line joining the head point to the mid foot point

G.5.3 DIMENSIONS

<table>
<thead>
<tr>
<th></th>
<th>minimum</th>
<th>maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leech lengths</td>
<td></td>
<td>6700 mm</td>
</tr>
<tr>
<td>Foot length</td>
<td></td>
<td>4000 mm</td>
</tr>
<tr>
<td>Foot Median</td>
<td></td>
<td>7500 mm</td>
</tr>
<tr>
<td>Half width</td>
<td></td>
<td>3750 mm - 4400 mm</td>
</tr>
<tr>
<td>Primary reinforcement</td>
<td></td>
<td>400 mm</td>
</tr>
</tbody>
</table>

Published Date: 13th August 2015
Effective Date: 13th August 2015
Previous Issue: 18th June 2008

© ISAF 2015